首页> 外文OA文献 >Analyses of crack growth along interface of patterned wafer-level Cu-Cu bonds
【2h】

Analyses of crack growth along interface of patterned wafer-level Cu-Cu bonds

机译:沿图案化晶圆级Cu-Cu键界面裂纹扩展的分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A preliminary theoretical study is carried out of the role of micron-scale patterning on the interface toughness of bonded Cu-to-Cu nanometer-scale films. The work is motivated by the experimental studies of [Tadepalli, R., Turner. K.T., Thompson, C.V., 2008b. Effects of patterning on the interface toughness of wafer-level Cu-Cu bonds. Acta Materialia 56, 438-447; Tadepalli, R., Turner, K.T., Thompson, C.V., 2008c. Mixed-mode interface toughness of wafer-level Cu-Cu bonds using asymmetric chevron test. J. Mech. Phys. Solids 56, 707-718.] wherein 400 nm Cu films were deposited in a variety of patterns on Si wafer substrates. Specimens were then produced by bringing the Cu surfaces into contact creating thermo-compression bonds. Interface toughness of these specimens was experimentally measured. The present study focuses on interface patterns comprised of bonded strips, called lines, alternating with lines of unbonded interface, all aligned parallel to the crack front. The interface toughness model employs a cohesive zone to represent separation of the interface and J(2) flow theory of plasticity to characterize the Cu films. Remote mode I loading is imposed on the elastic Si substrates. The computational model provides the resistance curve of macroscopic crack driving force versus crack advance as dependent on the work of separation and strength of the interface as well as the pattern geometry and the parameters controlling the plasticity of the Cu films. Plasticity in the Cu films makes a major contribution to the macroscopic interface toughness measured by Tadepalli, Turner and Thompson. Highlighted in this study is the difficulty of accurately representing plastic yielding in the thin films and the challenge of capturing the full range of scales in a computational model.
机译:进行了初步的理论研究,研究了微米级图案化对键合Cu-to-Cu纳米级薄膜的界面韧性的作用。这项工作是由[Tadepalli,R.,Turner。 K.T.,汤普森,C.V.,2008b。图案化对晶圆级Cu-Cu键的界面韧性的影响。材料学报56,438-447; Tadepalli,R.,Turner,K.T.,汤普森,C.V.,2008c。晶圆级Cu-Cu键的混合模式界面韧性使用不对称V形测试。 J.机甲物理固体56,707-718。],其中400nm的Cu膜以各种图案沉积在Si晶片衬底上。然后通过使铜表面接触以产生热压键来产生样品。通过实验测量这些样品的界面韧性。本研究的重点是由粘结带(称为线)组成的界面图案,与未粘结界面的线交替排列,均平行于裂纹前沿。界面韧性模型采用一个内聚区来表示界面的分离,并使用J(2)塑性塑性流动理论来表征Cu膜。远程模式I加载施加在弹性Si基板上。该计算模型根据界面的分离功和强度以及图案的几何形状和控制铜膜可塑性的参数,提供了宏观裂纹驱动力与裂纹前进的抵抗曲线。 Tadepalli,Turner和Thompson测量的Cu薄膜的可塑性对宏观界面韧性起了主要作用。这项研究强调的是在薄膜中准确表示塑性屈服的困难,以及在计算模型中捕获整个范围的鳞片的挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号